Supplemental Information:

Electoral Role Models: Political Empowerment and Candidate Emergence

A	Won	nen Emergence Analysis	3
	A.1	Descriptive Statistics	3
	A.2	Assumption Tests	5
	A.3	Complete Results	6
	A.4	Models with Control Variables	8
	A.5	Sensitivity Analysis	9
	A.6	Models Using Polynomials (2, 3, 4)	11
	A.7	Power Analysis	13
	A.8	Results by Election-Year	15
	A.9	Additional Elections (2000-2008)	16
	A.10	Estimated Difference for Candidates With and Without Experience	20
	A.11	Spatial Models	22
B	Afro	-Brazilian Emergence Analysis	25
	B .1	Descriptive Statistics	25
	B.2	Assumption Tests	27
	B.3	Complete Results	28
	B.4	Models with Control Variables	29
	B.5	Sensitivity Analysis	31

D	Non	-competitive Candidates	45
C	Inte	rsectionality Based Analysis	42
	B.11	Spatial Models	39
	B .10	Estimated Difference for Candidates With and Without Experience	38
	B.9	Models for Blacks (Pretos) and Browns (Pardos)	37
	B.8	Power Analysis	36
	B.7	Models Using Polynomials (2, 3, 4)	34
	B.6	Models for Cities with At Least 50% of Afro-Brazilians	33

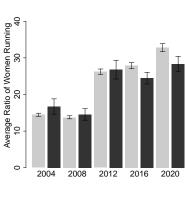
A Women Emergence Analysis

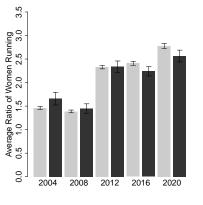
A.1 Descriptive Statistics

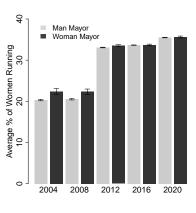
Table A.1 shows the gender of the top-2 candidates in the 2012-2020 municipal elections. The table includes all elections, i.e., it reports even elections where the runner-up was disqualified or candidates tied.

Table A.1: Gender Composition of Mayoral Elections 2012-2020 (Winner and Runner-up)

Winner	Runner-up				
vv mmen	Women	Men			
Women	253	1476			
Men	2004	12179			


Table A.2: Descriptive Statistics for the Women Candidate Emergence Analysis

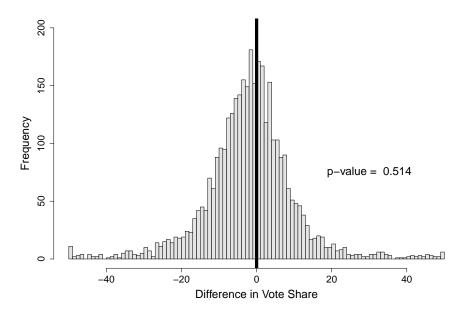

Statistic	Ν	Mean	St. Dev.	Min	Max
Running Variable	3,480	-1.891	12.042	-50.000	50.000
# of Women Candidates	3,480	26.077	26.668	3	466
Ratio of Women Candidates Per Seat	3,480	2.296	1.405	0.333	11.333
% of Women Candidates Per Seat	3,480	33.833	3.134	15.652	51.282
# of Women Candidates (No Political Experience)	3,480	19.669	20.726	0	347
Ratio of Women Candidates Per Seat (No Political Experience)	3,480	1.726	1.114	0.000	8.700
% of Women Candidates Per Seat (No Political Experience)	3,480	42.065	7.909	0.000	100.000
# of Women Candidates (No Political Experience from Mayoral Party)		46.051	26.809	0.000	100.000
Ratio of Women Candidates Per Seat (No Political Experience from Mayoral Party)		0.215	0.143	0.000	0.778
% of Women Candidates Per Seat (No Political Experience from Mayoral Party)		46.051	26.809	0.000	100.000


Figure A.1 displays the average value of our three dependent variables across time by the mayor's gender. Unlike our main analysis, which only considers those municipalities that had gender-mixed races in the previous election, these averages are from a dataset that includes *all* municipalities. Three observations stand out from the three panels. First, the number, ratio, and percentage of women running for local council dramatically increased from 2008 to 2012. This is likely a product of the change in the law of quotas highlighted in the body of the paper. Second, we observe that there is no clear pattern regarding where these averages are higher. In some instances, we observe higher values in municipalities governed by a woman and, in others, in municipalities governed by a man. Finally, both the number and the ratio of women running oscillate from

election to election, indicating no clear pattern. Nevertheless, the percentage of women running seems to be the most stable measure in the analyzed period.

Figure A.1: Average Number, Ratio, and Percentage of Women Running for Local Council in Municipalities Governed by Mayor's Gender

(a) # of Women Candidates


(b) Ratio of Women Candidates Per Seat

(c) % of Women Candidates

Note: 95% Confidence intervals.

A.2 Assumption Tests

Figure A.2: Manipulation Test — Histogram of Difference in Vote Share — 2008, 2012, and 2016 Brazil's Mayoral Elections

Note: Black vertical line represents the threshold. p-value for manipulation test using the local polynomial density estimator proposed by Cattaneo et al. (2019)

Table A.3 shows the results for the balance tests. We test for the municipality and individual characteristics. The results only reveal imbalances regarding women's educational and professional backgrounds. These imbalances can be attributed to variations in socialization patterns between men and women, as well as the fact, on average, Brazilian women possess higher levels of education compared to men (?). In SI A.4, we report models that include these variables as control variables. Our findings primarily demonstrate null effects, with 2 (out of 9) statistically significant but negative results.

Table A.3: Balance Tests—Emergence of Women City Council Candidates in Brazil's 2012-2020 Elections

	Estimate	<i>p</i> -value	h	n_{co}	n_{tr}
Afro-Brazilian	-0.028	0.385	7.452	1101	943
College Degree	0.152^{**}	0.003	8.179	1186	1007
Married	-0.013	0.764	8.295	1197	1010
Age	-1.537	0.105	9.107	1272	1064
Occupation = Merchant	-0.067^{**}	0.004	6.391	965	856
Occupation = Public Servant	0.058^{**}	0.004	10.649	1410	1134
Occupation = Administrator	-0.001	0.957	5.917	914	807
Occupation = Farmer	-0.086^{**}	0.000	8.411	1203	1020
Occupation = Businessperson	-0.055	0.059	6.894	1024	897
Occupation = Medical Doctor	-0.031	0.091	10.150	1374	1112
Occupation = Politician	-0.007	0.864	7.893	1151	982
Incumbent	0.002	0.963	7.401	1095	947
# of Instances As Candidate	-0.133	0.113	9.473	1318	1078
# of Instances that Won Office	-0.067	0.204	9.895	1348	1102
% of Afro-Brazilian Population	-0.339	0.884	7.685	1128	965
% of Female Population	0.269	0.100	6.789	1012	887
% of Urban Population	1.554	0.448	9.298	1298	1070
GDP Per Capita (log)	0.014	0.855	7.303	1090	936
Population	-11.132	0.066	4.016	640	612

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election. Estimates are the average treatment effect at cutoff with local linear polynomial regression with triangular kernel and MSE-optimal bandwidth. Columns 1-5 are: *p*-value calculated using bias-robust standard errors, main optimal bandwidth, control and treatment observations within the bandwidth. *p < 0.05; **p < 0.01

A.3 Complete Results

In this SI, we report the complete results from the models reported in the body of the paper. Note that our sample for the emergence of women candidates without political experience from the mayor's party is smaller because the mayor's party did not field candidates in 23.6% of the sample.

	Estimate	<i>p</i> -value	h	n_{co}	n_{tr}
# of Women Candidates	-5.307^{*}	0.035	5.065	795	721
Ratio of Women Candidates Per Seat	-0.169	0.212	7.443	1102	948
% of Women Candidates	0.074	0.817	7.860	1145	981

Table A.4: Emergence of Women City Council Candidates in Brazil's 2012-2020 Elections

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election. Estimates are the average treatment effect at cutoff with local linear polynomial regression with triangular kernel and MSE-optimal bandwidth. Columns 1-5 are: estimate, *p*-value calculated using bias-robust standard errors, main optimal bandwidth, control and treatment observations within the bandwidth. *p < 0.05

Table A.5: Emergence of Women City Council Candidates Without Political Experience in Brazil's 2012-2020 Elections

	Estimate	<i>p</i> -value	h	n_{co}	n_{tr}
# of Women Candidates	-4.192^{*}	0.028	4.921	767	707
Ratio of Women Candidates Per Seat	-0.163	0.130	6.820	1016	891
% of Women Candidates	-0.006	0.993	11.406	1470	1171

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election. Estimates are the average treatment effect at cutoff with local linear polynomial regression with triangular kernel and MSE-optimal bandwidth. Columns 1-5 are: estimate, *p*-value calculated using biasrobust standard errors, main optimal bandwidth, control and treatment observations within the bandwidth. *p < 0.05

Table A.6: Emergence of Women City Council Candidates Without Political Experience from the Mayor's Party in Brazil's 2012-2020 Elections

	Estimate	<i>p</i> -value	h	n_{co}	n_{tr}
# of Women Candidates	0.208	0.316	7.705	807	667
Ratio of Women Candidates Per Seat	0.022	0.224	8.554	875	717
% of Women Candidates	-0.516	0.872	8.575	876	718

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election. Estimates are the average treatment effect at cutoff with local linear polynomial regression with triangular kernel and MSE-optimal bandwidth. Columns 1-5 are: estimate, *p*-value calculated using bias-robust standard errors, main optimal bandwidth, control and treatment observations within the bandwidth. *p < 0.05

A.4 Models with Control Variables

In this SI, we re-run the models, including control variables for municipal and individual charac-

teristics. Our results demonstrate null effects in all models with a few negative point estimates.

Table A.7: Emergence of Women City Council Candidates in Brazil's 2012-2020 Elections, with Control Variable

	Estimate	<i>p</i> -value	h	n_{co}	n_{tr}
# of Women Candidates	-1.478	0.266	5.820	896	795
Ratio of Women Candidates Per Seat	-0.114	0.363	4.917	763	703
% of Women Candidates	0.145	0.639	6.463	969	857

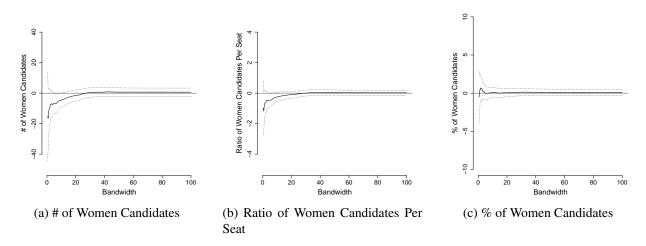
Note: Running variable is the difference in vote share between the top-two candidates in the municipal election. Models include population in thousands, the percentage of urban population, of Afro-Brazilian population, of female population, and GDP per capita (log). Additionally, we also control for the mayor's race, age, education attainment (college degree), marital status (married), political experience (times as candidate, number of times holding elected office, and incumbency status), and occupation (merchant, politician, public servant, businessperson, doctor, administrator, and farmer). Estimates are the average treatment effect at cutoff with local linear polynomial regression with triangular kernel and MSE-optimal bandwidth. Columns 1-5 are: estimate, *p*-value calculated using bias-robust standard errors, main optimal bandwidth, control and treatment observations within the bandwidth. *p < 0.05; **p < 0.01

Table A.8: Emergence of Women City Council Candidates Without Political Experience in Brazil's 2012-2020 Elections, with Control Variable

	Estimate	<i>p</i> -value	h	n_{co}	n_{tr}
# of Women Candidates	-1.248	0.243	5.726	887	786
Ratio of Women Candidates Per Seat	-0.103	0.297	4.937	770	704
% of Women Candidates	0.052	0.938	10.694	1411	1131

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election. Models include population in thousands, the percentage of urban population, of Afro-Brazilian population, of female population, and GDP per capita (log). Additionally, we also control for the mayor's race, age, education attainment (college degree), marital status (married), political experience (times as candidate, number of times holding elected office, and incumbency status), and occupation (merchant, politician, public servant, businessperson, doctor, administrator, and farmer). Estimates are the average treatment effect at cutoff with local linear polynomial regression with triangular kernel and MSE-optimal bandwidth. Columns 1-5 are: estimate, *p*-value calculated using bias-robust standard errors, main optimal bandwidth, control and treatment observations within the bandwidth. *p < 0.05; **p < 0.01

Table A.9: Emergence of Women City Council Candidates Without Political Experience from the Mayor's Party in Brazil's 2012-2020 Elections, with Control Variable


	Estimate	<i>p</i> -value	h	n_{co}	n_{tr}
# of Women Candidates	0.210	0.311	5.996	657	569
Ratio of Women Candidates Per Seat	0.021	0.242	8.121	844	697
% of Women Candidates	1.000	0.719	11.290	1052	815

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election. Models include population in thousands, the percentage of urban population, of Afro-Brazilian population, of female population, and GDP per capita (log). Additionally, we also control for the mayor's race, age, education attainment (college degree), marital status (married), political experience (times as candidate, number of times holding elected office, and incumbency status), and occupation (merchant, politician, public servant, businessperson, doctor, administrator, and farmer). Estimates are the average treatment effect at cutoff with local linear polynomial regression with triangular kernel and MSE-optimal bandwidth. Columns 1-5 are: estimate, *p*-value calculated using bias-robust standard errors, main optimal bandwidth, control and treatment observations within the bandwidth. *p < 0.05; **p < 0.01

A.5 Sensitivity Analysis

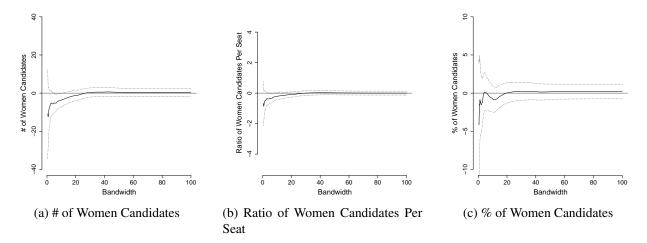

In this SI, we present results from a sensitivity analysis for the bandwidth. We observe that for most of our tests (7 out of 9), the results are null for all possible bandwidths. Consistent with our main results, we find negative and statistically significant results for some bandwidths when looking at the number of women candidates (Figure A.3, panel a) and the number of women candidates without political experience (Figure A.4, panel a).

Figure A.3: Sensitivity Analysis for the Emergence of Women City Council Candidates in Brazil's 2012-2020 Elections

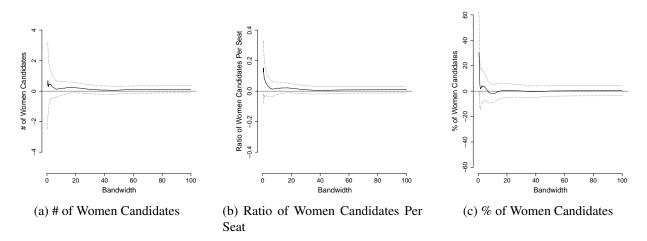

Note: Figure shows sensitivity analysis for the bandwidth. 95% Confidence Intervals

Figure A.4: Sensitivity Analysis for the Emergence of Women City Council Candidates Without Political Experience in Brazil's 2012-2020 Elections

Note: Figure shows sensitivity analysis for the bandwidth. 95% Confidence Intervals

Figure A.5: Sensitivity Analysis for the Emergence of Women City Council Candidates Without Political Experience from the Mayor's Party in Brazil's 2012-2020 Elections

Note: Figure shows sensitivity analysis for the bandwidth. 95% Confidence Intervals

A.6 Models Using Polynomials (2, 3, 4)

In this SI, we present the results from models using polynomials of order 2, 3, and 4. Our results show robust null results (20 out of 27). Consistent with our main results, we find negative and statistically significant results for the number of women candidates, the number of women candidates without political experience, and the ratio of women candidates without political experience (only for polynomial of order 4).

Table A.10: Emergence of Women City Council Candidates in Brazil's 2012-2020 Elections, Different Polynomials

	Polynomial	Estimate	p-value	h	n_{co}	n_{tr}
# of Women Candidates	2	-5.653^{*}	0.046	8.752	1237	1045
Ratio of Women Candidates Per Seat	2	-0.297	0.093	9.710	1336	1093
% of Women Candidates	2	0.072	0.842	12.114	1509	1199
# of Women Candidates	3	-6.486^{*}	0.033	12.942	1570	1235
Ratio of Women Candidates Per Seat	3	-0.337	0.075	14.235	1631	1270
% of Women Candidates	3	0.155	0.706	14.518	1641	1275
# of Women Candidates	4	-6.564^{*}	0.033	20.084	1807	1361
Ratio of Women Candidates Per Seat	4	-0.424	0.050	16.625	1725	1312
% of Women Candidates	4	0.087	0.855	15.560	1682	1294

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election. Estimates are the average treatment effect at cutoff with local linear polynomial regression with triangular kernel and MSE-optimal bandwidth. Columns 1-6 are: polynomial, estimate, *p*-value calculated using bias-robust standard errors, main optimal bandwidth, control and treatment observations within the bandwidth. * p < 0.05

Table A.11: Emergence of Women City Council Candidates Without Political Experience in Brazil's 2012-2020 Elections, Different Polynomials

	Polynomial	Estimate	<i>p</i> -value	h	n_{co}	n_{tr}
# of Women Candidates	2	-4.423^{*}	0.038	8.659	1224	1039
Ratio of Women Candidates Per Seat	2	-0.251	0.065	9.407	1311	1074
% of Women Candidates	2	-0.835	0.402	9.664	1330	1092
# of Women Candidates	3	-4.970^{*}	0.027	13.236	1587	1244
Ratio of Women Candidates Per Seat	3	-0.274	0.055	14.452	1637	1275
% of Women Candidates	3	-0.950	0.373	14.072	1622	1267
# of Women Candidates	4	-5.240^{*}	0.027	18.801	1779	1346
Ratio of Women Candidates Per Seat	4	-0.312^{*}	0.049	18.019	1765	1340
% of Women Candidates	4	-0.356	0.762	16.768	1730	1314

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election. Estimates are the average treatment effect at cutoff with local linear polynomial regression with triangular kernel and MSE-optimal bandwidth. Columns 1-6 are: polynomial, estimate, *p*-value calculated using bias-robust standard errors, main optimal bandwidth, control and treatment observations within the bandwidth. * p < 0.05

Table A.12: Emergence of Women City Council Candidates Without Political Experience from the Mayor's Party in Brazil's 2012-2020 Elections, Different Polynomials

	Polynomial	Estimate	<i>p</i> -value	h	n_{co}	n_{tr}
# of Women Candidates	2	0.224	0.317	13.471	1161	869
Ratio of Women Candidates Per Seat	2	0.019	0.409	11.055	1047	807
% of Women Candidates	2	-2.077	0.582	11.968	1083	835
# of Women Candidates	3	0.108	0.698	13.774	1165	874
Ratio of Women Candidates Per Seat	3	0.014	0.570	14.271	1186	882
% of Women Candidates	3	-2.946	0.517	13.295	1153	866
# of Women Candidates	4	0.148	0.648	16.039	1243	907
Ratio of Women Candidates Per Seat	4	0.015	0.621	15.547	1224	900
% of Women Candidates	4	-1.260	0.802	16.197	1247	908

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election. Estimates are the average treatment effect at cutoff with local linear polynomial regression with triangular kernel and MSE-optimal bandwidth. Columns 1-6 are: polynomial, estimate, *p*-value calculated using bias-robust standard errors, main optimal bandwidth, control and treatment observations within the bandwidth. *p < 0.05

A.7 Power Analysis

In this SI, we report power analyses to detect an effect equal to 1/2 of the standard deviation of the dependent variable with power equal to 0.8 and $\alpha = 0.05$.

Tables A.13, A.14, and A.15 show power analyses for the emergence of women candidates, women candidates without political experience, and women candidates without political experience from the mayor's party. Given the feasibility of our sample ($N_{co} = 2004, N_{tr} = 1476$), the power analyses indicate that our sample is large enough to detect an effect equal to 1/2 of the standard deviation of the dependent variable.

Table A.13: Emergence of Women City Council Candidates in Brazil's 2012-2020 Elections, Sample Size Calculation to Detect an Effect Equal to Half of the Standard Deviation of the Dependent Variable

	au	n_{co}	n_{tr}	N
# of Women Candidates	13.334	252	169	421
Ratio of Women Candidates Per Seat	0.703	323	274	597
% of Women Candidates	1.567	353	346	699

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election. Columns 2-5 are: effect size (half of the dependent variable's standard deviation), control and treatment observations needed within the bandwidth to detect the effect, and the total number of observations needed.

Table A.14: Emergence of Women City Council Candidates Without Political Experience in Brazil's 2012-2020 Elections, Sample Size Calculation to Detect an Effect Equal to Half of the Standard Deviation of the Dependent Variable

	au	n_{co}	n_{tr}	N
# of Women Candidates	10.363	227	161	388
Ratio of Women Candidates Per Seat	0.557	300	261	561
% of Women Candidates	3.954	297	312	609

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election. Columns 2-5 are: effect size (half of the dependent variable's standard deviation), control and treatment observations needed within the bandwidth to detect the effect, and the total number of observations needed.

Table A.15: Emergence of Women City Council Candidates Without Political Experience From the Mayor's Party in Brazil's 2012-2020 Elections, Sample Size Calculation to Detect an Effect Equal to Half of the Standard Deviation of the Dependent Variable

	au	n_{co}	n_{tr}	N
# of Women Candidates	0.828	345	390	735
Ratio of Women Candidates Per Seat	0.072	363	408	771
% of Women Candidates	13.405	349	373	722

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election. Columns 2-5 are: effect size (half of the dependent variable's standard deviation), control and treatment observations needed within the bandwidth to detect the effect, and the total number of observations needed.

A.8 Results by Election-Year

In this SI, we present our results based on election years. Tables A.25, A.26, and A.27 primarily show null findings, accounting for 20 out of 27 results. However, we do find negative and statistically significant results for the percentage of women candidates in 2016, the number of women candidates in 2020, the percentage of women candidates without political experience in 2016, and the number of women candidates without political experience in 2020. Additionally, we observe positive and statistically significant results in three cases, all occurring in 2012. These include the percentage of women candidates, the percentage of women candidates without political experience from the mayor's party.

Table A.16: Emergence of Women City Council Candidates in Brazil's 2012-2020 Elections, by	1
Election-Year	

	Year	Estimate	<i>p</i> -value	h	n_{co}	n_{tr}
# of Women Candidates	2012	-0.838	0.757	6.154	289	237
Ratio of Women Candidates Per Seat	2012	-0.096	0.580	7.116	324	268
% of Women Candidates	2012	1.335^{*}	0.018	7.424	335	273
# of Women Candidates	2016	1.176	0.675	6.429	339	313
Ratio of Women Candidates Per Seat	2016	0.068	0.728	8.756	446	374
% of Women Candidates	2016	-0.911^{*}	0.040	6.823	351	324
# of Women Candidates	2020	-10.953^{*}	0.016	7.086	363	319
Ratio of Women Candidates Per Seat	2020	-0.634	0.059	5.700	299	274
% of Women Candidates	2020	-0.377	0.444	8.448	418	369

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election. Estimates are the average treatment effect at cutoff with local linear polynomial regression with triangular kernel and MSE-optimal bandwidth. Columns 1-6 are: year, estimate, *p*-value calculated using bias-robust standard errors, main optimal bandwidth, control and treatment observations within the bandwidth. *p < 0.05

Table A.17: Emergence of Women City Council Candidates Without Political Experience in Brazil's 2012-2020 Elections, by Election-Year

	Year	Estimate	<i>p</i> -value	h	n_{co}	n_{tr}
# of Women Candidates	2012	-0.397	0.859	6.211	292	240
Ratio of Women Candidates Per Seat	2012	-0.054	0.708	7.002	319	264
% of Women Candidates	2012	3.100^{*}	0.017	8.949	374	296
# of Women Candidates	2016	0.321	0.885	6.325	337	313
Ratio of Women Candidates Per Seat	2016	0.042	0.769	10.252	493	403
% of Women Candidates	2016	-4.217^{**}	0.003	7.152	368	330
# of Women Candidates	2020	-7.490^{*}	0.016	8.038	408	360
Ratio of Women Candidates Per Seat	2020	-0.486	0.052	5.741	302	277
% of Women Candidates	2020	-0.408	0.716	10.173	469	399

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election. Estimates are the average treatment effect at cutoff with local linear polynomial regression with triangular kernel and MSE-optimal bandwidth. Columns 1-6 are: year, estimate, *p*-value calculated using bias-robust standard errors, main optimal bandwidth, control and treatment observations within the bandwidth. *p < 0.05; * *p < 0.01

Table A.18: Emergence of Women City Council Candidates Without Political Experience from the Mayor's Party in Brazil's 2012-2020 Elections, by Election-Year

	Year	Estimate	<i>p</i> -value	h	n_{co}	n_{tr}
# of Women Candidates	2012	-0.117	0.715	6.343	267	224
Ratio of Women Candidates Per Seat	2012	-0.021	0.471	6.428	268	226
% of Women Candidates	2012	-2.502	0.652	6.548	269	228
# of Women Candidates	2016	0.224	0.468	7.886	321	272
Ratio of Women Candidates Per Seat	2016	0.011	0.734	7.622	311	267
% of Women Candidates	2016	-6.099	0.292	8.302	337	281
# of Women Candidates	2020	0.526	0.182	9.133	212	169
Ratio of Women Candidates Per Seat	2020	0.082^{*}	0.022	7.831	192	153
% of Women Candidates	2020	7.079	0.118	8.044	194	158

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election. Estimates are the average treatment effect at cutoff with local linear polynomial regression with triangular kernel and MSE-optimal bandwidth. Columns 1-6 are: year, estimate, p-value calculated using bias-robust standard errors, main optimal bandwidth, control and treatment observations within the bandwidth. *p < 0.05

A.9 Additional Elections (2000-2008)

In this SI, we analyze candidate emergence during the period before the 2009 gender quota law, focusing on the 2000, 2004, and 2008 elections. The substantive interpretation, as presented in the main body of the paper, remains consistent when examining: the combined period before and after

gender quotas (A.9.1), only the period before gender quotas (A.9.1), and each individual election before gender quotas (A.9.1).

A.9.1 Main Results: 2000 to 2020

Table A.19: Emergence of Women City Council Candidates in Brazil's 2000-2020 Elections

	Estimate	<i>p</i> -value	h	n_{co}	n_{tr}
# of Women Candidates	-3.688^{*}	0.044	5.245	1185	1071
Ratio of Women Candidates Per Seat	-0.168	0.160	6.132	1327	1196
% of Women Candidates	0.567	0.368	7.788	1628	1387

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election. Estimates are the average treatment effect at cutoff with local linear polynomial regression with triangular kernel and MSE-optimal bandwidth. Columns 1-5 are: estimate, *p*-value calculated using biasrobust standard errors, main optimal bandwidth, control and treatment observations within the bandwidth. *p < 0.05

Table A.20: Emergence of Women City Council Candidates Without Political Experience in Brazil's 2000-2020 Elections

	Estimate	<i>p</i> -value	h	n_{co}	n_{tr}
# of Women Candidates	-2.922^{*}	0.036	5.169	1167	1054
Ratio of Women Candidates Per Seat	-0.147	0.111	6.026	1312	1184
% of Women Candidates	0.048	0.960	7.751	1624	1382

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election. Estimates are the average treatment effect at cutoff with local linear polynomial regression with triangular kernel and MSE-optimal bandwidth. Columns 1-5 are: estimate, *p*-value calculated using biasrobust standard errors, main optimal bandwidth, control and treatment observations within the bandwidth. *p < 0.05

Table A.21: Emergence of Women City Council Candidates Without Political Experience from the Mayor's Party in Brazil's 2000-2020 Elections

	Estimate	<i>p</i> -value	h	n_{co}	n_{tr}
# of Women Candidates	0.234	0.163	7.456	1128	968
Ratio of Women Candidates Per Seat	0.024	0.114	7.852	1172	1001
% of Women Candidates	0.835	0.756	10.031	1411	1135

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election. Estimates are the average treatment effect at cutoff with local linear polynomial regression with triangular kernel and MSE-optimal bandwidth. Columns 1-5 are: estimate, *p*-value calculated using biasrobust standard errors, main optimal bandwidth, control and treatment observations within the bandwidth. *p < 0.05

Main Results: 2000 to 2008

Table A.22: Emergence of Women City Council Candidates in Brazil's 2000-2008 Elections

	Estimate	<i>p</i> -value	h	n_{co}	n_{tr}
# of Women Candidates	-1.023	0.454	8.055	500	422
Ratio of Women Candidates Per Seat	-0.127	0.370	8.033	500	421
% of Women Candidates	0.293	0.768	8.517	528	433

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election. Estimates are the average treatment effect at cutoff with local linear polynomial regression with triangular kernel and MSE-optimal bandwidth. Columns 1-5 are: estimate, *p*-value calculated using bias-robust standard errors, main optimal bandwidth, control and treatment observations within the bandwidth. *p < 0.05

Table A.23: Emergence of Women City Council Candidates Without Political Experience in Brazil's 2000-2008 Elections

	Estimate	<i>p</i> -value	h	n_{co}	n_{tr}
# of Women Candidates	-0.855	0.429	8.241	511	428
Ratio of Women Candidates Per Seat	-0.104	0.356	8.495	527	431
% of Women Candidates	0.032	0.986	6.990	456	392

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election. Estimates are the average treatment effect at cutoff with local linear polynomial regression with triangular kernel and MSE-optimal bandwidth. Columns 1-5 are: estimate, *p*-value calculated using bias-robust standard errors, main optimal bandwidth, control and treatment observations within the bandwidth. **p* < 0.05

Table A.24: Emergence of Women City Council Candidates Without Political Experience from the Mayor's Party in Brazil's 2000-2008 Elections

	Estimate	<i>p</i> -value	h	n_{co}	n_{tr}
# of Women Candidates	0.239	0.321	8.467	380	334
Ratio of Women Candidates Per Seat	0.027	0.319	8.210	370	329
% of Women Candidates	2.491	0.694	7.583	346	315

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election. Estimates are the average treatment effect at cutoff with local linear polynomial regression with triangular kernel and MSE-optimal bandwidth. Columns 1-5 are: estimate, *p*-value calculated using bias-robust standard errors, main optimal bandwidth, control and treatment observations within the bandwidth. **p* < 0.05

Results by Election Year (2000, 2004, and 2008)

Table A.25: Emergence of Women City Council Candidates in Brazil's 2000-2020 Elections, by Election-Year

	Year	Estimate	<i>p</i> -value	h	n_{co}	n_{tr}
# of Women Candidates	2000	_	_	_	_	_
Ratio of Women Candidates Per Seat	2000	_	_	_	_	_
% of Women Candidates	2000	_	_	_	_	_
# of Women Candidates	2004	-0.492	0.814	8.493	224	180
Ratio of Women Candidates Per Seat	2004	-0.101	0.647	8.404	224	180
% of Women Candidates	2004	-0.604	0.675	9.267	241	197
# of Women Candidates	2008	-2.547	0.158	5.682	210	201
Ratio of Women Candidates Per Seat	2008	-0.221	0.237	6.048	218	211
% of Women Candidates	2008	1.323	0.383	7.461	265	235

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election. Estimates are the average treatment effect at cutoff with local linear polynomial regression with triangular kernel and MSE-optimal bandwidth. Columns 1-6 are: year, estimate, p-value calculated using bias-robust standard errors, main optimal bandwidth, control and treatment observations within the bandwidth. We were unable to perform bandwidth calculations for 2000 due to the reduced sample size. *p < 0.05

Table A.26: Emergence of Women City Council Candidates Without Political Experience in Brazil's 2000-2020 Elections, by Election-Year

	Year	Estimate	<i>p</i> -value	h	n_{co}	n_{tr}
# of Women Candidates	2000	_	_	_	_	_
Ratio of Women Candidates Per Seat	2000	_	_	_	_	_
% of Women Candidates	2000	_	_	_	_	_
# of Women Candidates	2004	-0.284	0.869	8.420	224	180
Ratio of Women Candidates Per Seat	2004	-0.062	0.731	8.710	230	185
% of Women Candidates	2004	0.577	0.811	7.132	202	163
# of Women Candidates	2008	-1.976	0.133	6.258	232	216
Ratio of Women Candidates Per Seat	2008	-0.162	0.231	6.937	254	224
% of Women Candidates	2008	-0.284	0.918	6.514	243	222

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election. Estimates are the average treatment effect at cutoff with local linear polynomial regression with triangular kernel and MSE-optimal bandwidth. Columns 1-6 are: year, estimate, *p*-value calculated using bias-robust standard errors, main optimal bandwidth, control and treatment observations within the bandwidth. We were unable to perform bandwidth calculations for 2000 due to the reduced sample size. *p < 0.05; * *p < 0.01

Table A.27: Emergence of Women City Council Candidates Without Political Experience from the Mayor's Party in Brazil's 2012-2020 Elections, by Election-Year

	Year	Estimate	<i>p</i> -value	h	n_{co}	n_{tr}
# of Women Candidates	2000	_	_	_	_	_
Ratio of Women Candidates Per Seat	2000	_	_	_	_	_
% of Women Candidates	2000	_	_	_	_	_
# of Women Candidates	2004	0.379	0.239	8.641	183	146
Ratio of Women Candidates Per Seat	2004	0.043	0.246	7.869	168	140
% of Women Candidates	2004	2.614	0.769	8.631	183	146
# of Women Candidates	2008	-0.539	0.143	4.381	115	118
Ratio of Women Candidates Per Seat	2008	-0.061	0.128	4.345	115	115
% of Women Candidates	2008	-2.285	0.819	5.573	138	146

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election. Estimates are the average treatment effect at cutoff with local linear polynomial regression with triangular kernel and MSE-optimal bandwidth. Columns 1-6 are: year, estimate, *p*-value calculated using bias-robust standard errors, main optimal bandwidth, control and treatment observations within the bandwidth. We were unable to perform bandwidth calculations for 2000 due to the reduced sample size. *p < 0.05

A.10 Estimated Difference for Candidates With and Without Experience

In this SI, we explore the possibility that the effect of a woman mayor on candidates without political experience might be more pronounced than among those candidates with political experience. In Table A.28, we report the RD coefficients for models in which we use dependent variables for candidates without and with political experience and a z-test for the difference in coefficients (?). Except for the analysis using the number of women without political experience as the dependent variable, we observe that the coefficients are null. Furthermore, we do not find any evidence that the estimated effects are different for each group of candidates.

Table A.28: Difference in the Effect of Woman Mayor on the Emergence of Women City CouncilCandidates Without and With Political Experience

Comparison	Effect on Candidates Without Experience	Effect on Candidates With Experience	Difference
# of Candidates	-4.192 (1.907)	-0.900 (0.676)	-3.292 (2.024)
Ratio of Candidates	-0.163 (0.108)	-0.011 (0.037)	-0.152 (0.114)
% of Candidates	-0.006 (0.675)	0.280 (0.824)	-0.286 (1.065)

***p < .05. Standard Errors in Parentheses. Two-tailed test.

A.11 Spatial Models

In this SI, we investigate the possibility that the election of a woman to mayoral office in neighboring municipalities boosts the number of women competing for a city council position in subsequent elections using spatial econometric models. This involves multiplying a variable that includes information about whether the mayor elected in the past election was a woman by a row-standardized spatial matrix that contains information about municipalities sharing a border. In practical terms, the result of this multiplication yields for each municipality the proportion of its neighbors that elected a woman mayor in the past election ("Spatial Lag" in the tables).

In Tables A.29 and A.30, the dependent variables are the counts of women candidates running for city council and women candidates running for city council without political experience, respectively. Following the approach of Gilardi (2015), we demonstrate the robustness of our results across Poisson and Negative Binomial specifications. Additionally, we performed OLS models with the dependent variable log-transformed to address the skewed distribution.

The model results provide no evidence of a spatial effect and reveal a small yet statistically significant impact of electing a woman mayor on the number of women willing to compete for a city council position in the next elections. For instance, according to the Poisson specification in Table A.29, when keeping all numeric variables at their means, we would predict, on average, 27.84 women to compete for a city council position in 2020 in the state of SP if a woman was elected mayor in the past election, compared to 26.91 if a man had been elected.

	Poisson	Negative Binomial	OLS
(Intercept)	-2.76^{***}	-1.48^{***}	-1.51^{***}
	(0.37)	(0.34)	(0.42)
Spatial Lag	0.01	0.03	0.03
	(0.03)	(0.03)	(0.02)
Woman elected as the Mayor (t-1)	0.03***	0.03***	0.04^{***}
	(0.01)	(0.01)	(0.01)
Number of Women Elected for City Council (t-1)	-0.04^{***}	-0.02^{***}	-0.03^{***}
	(0.01)	(0.00)	(0.01)
Number of Women Running for City Council (t-1)	-0.00^{***}	-0.01^{***}	-0.01^{***}
	(0.00)	(0.00)	(0.00)
Percent of Votes to Women Candidates in City Council Elections (t-1)	0.01^{***}	0.01^{***}	0.01^{***}
	(0.00)	(0.00)	(0.00)
Number of City Council Positions	-0.02^{***}	-0.04^{***}	-0.05^{***}
	(0.00)	(0.00)	(0.01)
Number of City Council Candidates	0.00^{***}	0.00***	0.00^{***}
	(0.00)	(0.00)	(0.00)
Percent of Votes to Left-Wing Parties in City Council Elections (t-1)	-0.00	-0.00	-0.00
	(0.00)	(0.00)	(0.00)
Literacy (%)	0.02^{***}	0.02***	0.02^{***}
	(0.00)	(0.00)	(0.00)
Women (%)	-0.00	-0.00	-0.00
	(0.01)	(0.01)	(0.01)
Urban (%)	0.00^{***}	0.00***	0.00***
	(0.00)	(0.00)	(0.00)
White (%)	-0.01^{***}	-0.00^{***}	-0.00^{***}
	(0.00)	(0.00)	(0.00)
Population (log)	0.42^{***}	0.35^{***}	0.36^{***}
	(0.01)	(0.02)	(0.02)
GDP per capita	0.00	0.00	-0.00
	(0.00)	(0.00)	(0.00)
N	15,788	15,788	15,788
Theta	_	26.747 (0.581)	_
Election fixed effects	Yes	Yes	Yes
State fixed effects	Yes	Yes	Yes

Table A.29: Emergence of Women City Council Candidates in Brazil's 2012-2020 Elections (Spatial Model Results)

Note: In practical terms, for each municipality, the "Spatial Lag" variable indicates the proportion of that municipality's neighbors that elected a woman mayor in the past election. The dependent variable in the Poisson and Negative Binomial models is the count of women candidates running for city council. In the OLS model, the dependent variable is the log-transformed count. Standard errors are clustered by state. ***p < 0.001; *p < 0.01; *p < 0.05

	Poisson	Negative Binomial	OLS
(Intercept)	-2.86^{***}	-1.51^{***}	-1.65^{***}
	(0.42)	(0.35)	(0.45)
Spatial Lag	0.00	0.02	0.01
	(0.03)	(0.02)	(0.02)
Woman elected as the Mayor (t-1)	0.03***	0.03***	0.04^{**}
	(0.01)	(0.01)	(0.01)
Number of Women Elected for City Council (t-1)	-0.05^{***}	-0.02^{***}	-0.03^{***}
	(0.01)	(0.01)	(0.01)
Number of Women Running for City Council (t-1)	-0.00^{***}	-0.01^{***}	-0.01^{***}
	(0.00)	(0.00)	(0.00)
Percent of Votes to Women Candidates in City Council Elections (t-1)	0.00	-0.00	-0.00
	(0.00)	(0.00)	(0.00)
Number of City Council Positions	-0.02^{***}	-0.05^{***}	-0.06^{***}
	(0.00)	(0.00)	(0.01)
Number of City Council Candidates	0.00^{***}	0.01^{***}	0.01^{***}
	(0.00)	(0.00)	(0.00)
Percent of Votes to Left-Wing Parties in City Council Elections (t-1)	-0.00	-0.00	-0.00
	(0.00)	(0.00)	(0.00)
Literacy (%)	0.02^{***}	0.02***	0.02^{***}
	(0.00)	(0.00)	(0.00)
Women (%)	-0.00	-0.00	-0.00
	(0.01)	(0.01)	(0.01)
Urban (%)	0.00^{***}	0.00***	0.00***
	(0.00)	(0.00)	(0.00)
White (%)	-0.00^{***}	-0.00^{***}	-0.00^{***}
	(0.00)	(0.00)	(0.00)
Population (log)	0.43^{***}	0.36***	0.37^{***}
	(0.01)	(0.02)	(0.02)
DGP per capita	0.00	0.00	0.00
	(0.00)	(0.00)	(0.00)
N	15,788	15,788	15,770
Theta	_	20.304 (0.461)	_
Election fixed effects	Yes	Yes	Yes
State fixed effects	Yes	Yes	Yes

Table A.30: Emergence of Women City Council Candidates Without Political Experience in Brazil's 2012-2020 Elections (Spatial Model Results)

Note: In practical terms, for each municipality, the "Spatial Lag" variable indicates the proportion of that municipality's neighbors that elected a woman mayor in the past election. The dependent variable in the Poisson and Negative Binomial models is the count of women candidates running for city council without political experience. In the OLS model, the dependent variable is the log-transformed count. Standard errors are clustered by state. ***p < 0.001; *p < 0.01; *p < 0.01; *p < 0.05

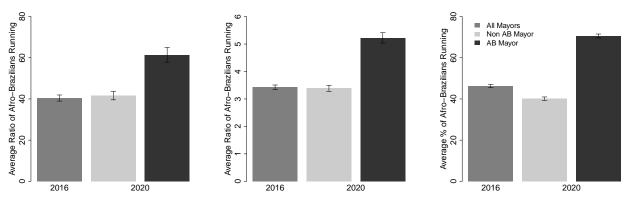
B Afro-Brazilian Emergence Analysis

B.1 Descriptive Statistics

Table B.1 shows the racial composition of the top-2 candidates in the 2016 municipal elections. The table includes all elections, i.e., it reports even elections where the runner-up was disqualified or candidates tied.

Winner			Runner-up		
W IIIICI	Yellow (Amarela)	White (Branca)	Indigenous (Indígena)	Brown (Parda)	Black (Preta)
Yellow (Amarela)	0	17	0	8	3
White (Branca)	22	2878	1	777	41
Indigenous (Indígena)	0	3	1	1	1
Brown (Parda)	9	715	3	709	35
Black (Preta)	0	52	0	36	4

Table B.1: Racial Composition of the 2016 Mayoral Election (Winner and Runner-up)


Table B.2: Descriptive Statistics for the Afro-Brazilian Candidate Emergence Analysis

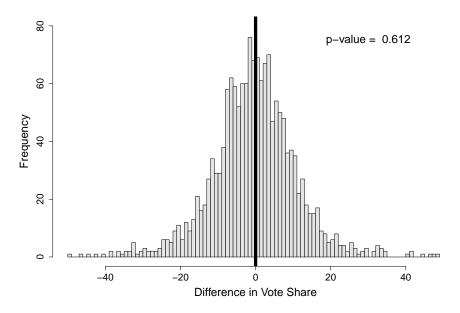
Statistic	Ν	Mean	St. Dev.	Min	Max
Running Variable	1,584	-0.438	11.349	-49.063	48.112
# of Afro-Brazilian Candidates	1,584	56.736	74.287	0	1,208
Ratio of Afro-Brazilian Candidates Per Seat	1,584	4.710	3.566	0.000	28.093
% of Afro-Brazilian Candidates Per Seat	1,584	64.433	21.005	0.000	100.000
# of Afro-Brazilian Candidates (No Political Experience)	1,584	35.237	49.890	0	812
Ratio of Afro-Brazilian Candidates Per Seat (No Political Experience)	1,584	2.887	2.433	0.000	18.884
% of Afro-Brazilian Candidates Per Seat (No Political Experience)	1,584	65.312	21.462	0.000	100.000
# of Afro-Brazilian Candidates (No Political Experience from Mayoral Party)	928	63.546	31.755	0.000	100.000
Ratio of Afro-Brazilian Candidates Per Seat (No Political Experience from Mayoral Party)	928	0.380	0.254	0.000	1.222
% of Afro-Brazilian Candidates Per Seat (No Political Experience from Mayoral Party)	928	63.546	31.755	0.000	100.000

Figure B.1 displays the average value of our three dependent variables for the 2016 and 2020 elections. Unfortunately, we are only able to calculate the averages by mayor's race in 2020, given that candidates' race was not collected before the 2014 general elections. Again, these averages consider *all* municipalities in our dataset, not only those with race-mixed elections in the previous mayoral election. We observe that the average number, ratio, and percentage of Afro-Brazilian candidates in 2016 is similar to the value observed in municipalities governed by a non-Afro-Brazilian in 2020. Moreover, for all three variables, we see that more Afro-Brazilians entered elections in municipalities governed by an Afro-Brazilian. However, due to data limitations, we

cannot assert if there was already a gap in Afro-Brazilian candidacies between municipalities governed by a non-Afro-Brazilian mayor and those governed by an Afro-Brazilian mayor. Finally, it is worth noticing that given that these averages consider all municipalities, confounders (i.e., electorate composition) are likely driving the entrance of Afro-Brazilians in municipalities governed by Afro-Brazilians in 2020.

Figure B.1: Average Number, Ratio, and Percentage of Afro-Brazilians Running for Local Council in Municipalities Governed by Mayor's Race

(a) # of Afro-Brazilian Candidates


(b) Ratio of Afro-Brazilian Candidates Per Seat

(c) % of Afro-Brazilian Candidates

Note: 95% Confidence intervals.

B.2 Assumption Tests

Figure B.2: Manipulation Test — Histogram of Difference in Vote Share — 2016 Brazil's Mayoral Election

Note: Black vertical line represents the threshold. p-value for manipulation test using the local polynomial density estimator proposed by Cattaneo et al. (2019)

Table B.3 shows the results from balance tests. We test for the municipality and individual characteristics. The results reveal no imbalance among our eighteen tests. In SI B.4, we report models that include these variables as control variables. Our findings continue to be mostly null effects, with a few statistically significant but negative results.

Table B.3: Balance Tests—Emergence of Afro-Brazilian City Council Candidates in Brazil's 2020 Elections

	Estimate	p-value	h	n_{co}	n_{tr}
Gender = Woman	-0.094	0.115	8.290	503	475
College Degree	-0.011	0.894	7.248	453	431
Married	0.127	0.074	6.421	403	394
Age	-0.952	0.572	7.786	482	460
Occupation = Merchant	-0.020	0.615	10.186	572	548
Occupation = Public Servant	0.012	0.671	6.968	435	418
Occupation = Administrator	-0.031	0.248	7.919	492	464
Occupation = Farmer	0.012	0.695	10.077	567	542
Occupation = Businessperson	0.022	0.634	10.751	583	565
Occupation = Medical Doctor	-0.003	0.921	5.803	366	358
Occupation = Politician	0.056	0.301	11.173	599	576
Incumbent	0.100	0.177	7.893	489	462
# of Instances As Candidate	0.306	0.055	6.727	420	404
# of Instances that Won Office	0.140	0.247	7.496	467	446
% of Afro-Brazilian Population	-0.606	0.780	10.773	583	565
% of Female Population	0.267	0.287	6.345	399	386
% of Urban Population	3.080	0.328	7.574	475	448
GDP Per Capita (log)	0.125	0.202	7.374	459	436
Population in Thousands	6.695	0.351	4.922	313	309

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election. Estimates are the average treatment effect at cutoff with local linear polynomial regression with triangular kernel and MSE-optimal bandwidth. Columns 1-5 are: *p*-value calculated using bias-robust standard errors, main optimal bandwidth, control and treatment observations within the bandwidth. **p* < 0.05

B.3 Complete Results

In this SI, we report the complete results from the models reported in the body of the paper. Note that our sample for the emergence of Afro-Brazilian candidates without political experience from the mayor's party is smaller because the mayor's party did not field candidates in almost 43% of the sample.

Table B.4: Emergence of Afro-Brazilian C	ity Council Candidates in Brazil's 2020 Elections

	Estimate	<i>p</i> -value	h	n_{co}	n_{tr}
# of Afro-Brazilian Candidates	5.934	0.519	6.969	435	418
Ratio of Afro-Brazilian Candidates Per Seat	0.503	0.275	9.928	559	536
% of Afro-Brazilian Candidates	-2.002	0.561	7.987	495	466

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election. Estimates are the average treatment effect at cutoff with local linear polynomial regression with triangular kernel and MSE-optimal bandwidth. Columns 1-5 are: estimate, *p*-value calculated using bias-robust standard errors, main optimal bandwidth, control and treatment observations within the bandwidth. *p < 0.05

Table B.5: Emergence of Afro-Brazilian City Council Candidates Without Political Experience in Brazil's 2020 Elections

	Estimate	<i>p</i> -value	h	n_{co}	n_{tr}
# of Afro-Brazilian Candidates	3.255	0.603	7.075	441	425
Ratio of Afro-Brazilian Candidates Per Seat	0.310	0.326	10.047	565	542
% of Afro-Brazilian Candidates	-0.928	0.789	7.989	495	466

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election. Estimates are the average treatment effect at cutoff with local linear polynomial regression with triangular kernel and MSE-optimal bandwidth. Columns 1-5 are: estimate, *p*-value calculated using bias-robust standard errors, main optimal bandwidth, control and treatment observations within the bandwidth. *p < 0.05

Table B.6: Emergence of Afro-Brazilian City Council Candidates Without Political Experience from the Mayor's Party in Brazil's 2020 Elections

	Estimate	<i>p</i> -value	h	n_{co}	n_{tr}
# of Afro-Brazilian Candidates	-0.892	0.205	8.109	272	299
Ratio of Afro-Brazilian Candidates Per Seat	-0.113^{*}	0.022	9.786	299	343
% of Afro-Brazilian Candidates	-2.348	0.702	10.501	311	357

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election. Estimates are the average treatment effect at cutoff with local linear polynomial regression with triangular kernel and MSE-optimal bandwidth. Columns 1-5 are: estimate, *p*-value calculated using bias-robust standard errors, main optimal bandwidth, control and treatment observations within the bandwidth. *p < 0.05

B.4 Models with Control Variables

In this SI, we re-run the models, including control variables for municipality and individual characteristics. As in our main analysis, we do not detect any statistically significant effect for the emergence of Afro-Brazilian candidates or the emergence of Afro-Brazilian candidates without political experience. Similarly to the main results, we do detect a negative and statistically significant result for the ratio of Afro-Brazilian candidates per seat when we restrict the analysis to the mayor's party (Table B.9).

Table B.7: Emergence of Afro-Brazilian City Council Candidates in Brazil's 2020 Elections, with Control Variable

	Estimate	<i>p</i> -value	h	n_{co}	n_{tr}
# of Afro-Brazilian Candidates	0.051	0.993	5.297	336	341
Ratio of Afro-Brazilian Candidates Per Seat	0.019	0.966	5.819	366	358
% of Afro-Brazilian Candidates	-0.773	0.728	7.518	470	447

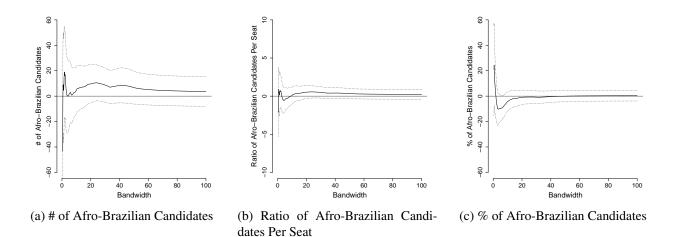
Note: Running variable is the difference in vote share between the top-two candidates in the municipal election. Models include population in thousands, the percentage of urban population, of Afro-Brazilian population, of female population, and GDP per capita (log). Additionally, we also control for the mayor's gender, age, education attainment (college degree), marital status (married), political experience (times as candidate, number of times holding elected office, and incumbency status), and occupation (merchant, politician, public servant, businessperson, doctor, administrator, and farmer). Estimates are the average treatment effect at cutoff with local linear polynomial regression with triangular kernel and MSE-optimal bandwidth. Columns 1-5 are: estimate, *p*-value calculated using bias-robust standard errors, main optimal bandwidth, control and treatment observations within the bandwidth. *p < 0.05

Table B.8: Emergence of Afro-Brazilian City Council Candidates Without Political Experience in Brazil's 2020 Elections, with Control Variable

	Estimate	<i>p</i> -value	h	n_{co}	n_{tr}
# of Afro-Brazilian Candidates	-0.737	0.857	5.175	328	328
Ratio of Afro-Brazilian Candidates Per Seat	-0.092	0.761	5.322	340	343
% of Afro-Brazilian Candidates	0.220	0.922	7.442	463	442

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election. Models include population in thousands, the percentage of urban population, of Afro-Brazilian population, of female population, and GDP per capita (log). Additionally, we also control for the mayor's gender, age, education attainment (college degree), marital status (married), political experience (times as candidate, number of times holding elected office, and incumbency status), and occupation (merchant, politician, public servant, businessperson, doctor, administrator, and farmer). Estimates are the average treatment effect at cutoff with local linear polynomial regression with triangular kernel and MSE-optimal bandwidth. Columns 1-5 are: estimate, *p*-value calculated using bias-robust standard errors, main optimal bandwidth, control and treatment observations within the bandwidth. *p < 0.05

Table B.9: Emergence of Afro-Brazilian City Council Candidates Without Political Experience from the Mayor's Party in Brazil's 2020 Elections, with Control Variable


	Estimate	<i>p</i> -value	h	n_{co}	n_{tr}
# of Afro-Brazilian Candidates	-1.088^{*}	0.048	8.922	286	324
Ratio of Afro-Brazilian Candidates Per Seat	-0.113^{*}	0.018	8.394	279	308
% of Afro-Brazilian Candidates	-4.456	0.401	7.991	271	297

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election. Models include population in thousands, the percentage of urban population, of Afro-Brazilian population, of female population, and GDP per capita (log). Additionally, we also control for the mayor's gender, age, education attainment (college degree), marital status (married), political experience (times as candidate, number of times holding elected office, and incumbency status), and occupation (merchant, politician, public servant, businessperson, doctor, administrator, and farmer). Estimates are the average treatment effect at cutoff with local linear polynomial regression with triangular kernel and MSE-optimal bandwidth. Columns 1-5 are: polynomial, *p*-value calculated using bias-robust standard errors, main optimal bandwidth, control and treatment observations within the bandwidth. *p < 0.05

B.5 Sensitivity Analysis

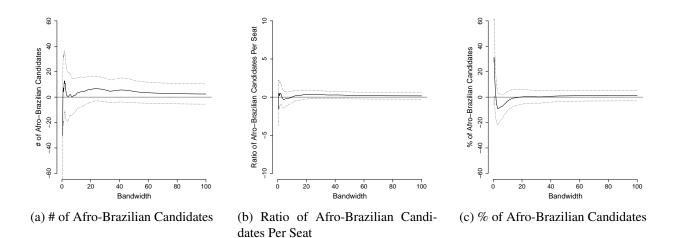

In this SI, we present results from a sensitivity analysis for the bandwidth. We observe that the results are null for all possible bandwidths in the analysis for the emergence of Afro-Brazilian candidates (Figure B.3) and the emergence of Afro-Brazilian candidates without political experience (Figure B.4). When we analyze the mayor's party, we find negative and statistically significant results for the number of Afro-Brazilian candidates and the ratio of Afro-Brazilian candidates per seat for some bandwidths (Figure B.5).

Figure B.3: Sensitivity Analysis for the Emergence of Afro-Brazilian City Council Candidates in Brazil's 2020 Elections

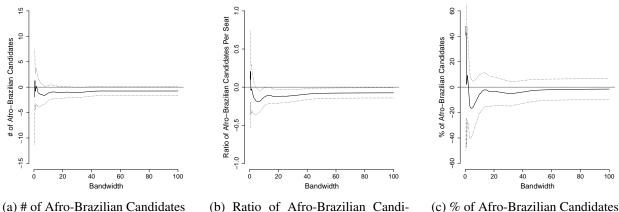

Note: Figure shows sensitivity analysis for the bandwidth. 95% Confidence Intervals

Figure B.4: Sensitivity Analysis for the Emergence of Afro-Brazilian City Council Candidates Without Political Experience in Brazil's 2020 Elections

Note: Figure shows sensitivity analysis for the bandwidth. 95% Confidence Intervals

Figure B.5: Sensitivity Analysis for the Emergence of Afro-Brazilian City Council Candidates Without Political Experience from the Mayor's Party in Brazil's 2020 Elections

dates Per Seat

Note: Figure shows sensitivity analysis for the bandwidth. 95% Confidence Intervals

B.6 Models for Cities with At Least 50% of Afro-Brazilians

In this SI, we re-run the models after subsetting the sample to municipalities where Afro-Brazilians are at least 50% of the population. As in our main analysis, we do not detect any statistically significant effect for the emergence of Afro-Brazilian candidates or the emergence of Afro-Brazilian candidates without political experience. Similarly to the main results, we do detect a negative and statistically significant result for the ratio of Afro-Brazilian candidates per seat when we restrict the analysis to the mayor's party (Table B.12).

Table B.10: Emergence of Afro-Brazilian City Council Candidates in Brazil's 2020 Elections, Only Municipalities with At Least 50% of Afro-Brazilians

	Estimate	<i>p</i> -value	h	n_{co}	n_{tr}
# of Afro-Brazilian Candidates	7.657	0.459	6.579	348	343
Ratio of Afro-Brazilian Candidates Per Seat	0.530	0.334	8.549	440	417
% of Afro-Brazilian Candidates	-0.373	0.896	8.246	427	408

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election. Estimates are the average treatment effect at cutoff with local linear polynomial regression with triangular kernel and MSE-optimal bandwidth. Columns 1-5 are: polynomial, *p*-value calculated using bias-robust standard errors, main optimal bandwidth, control and treatment observations within the bandwidth. * p < 0.05

Table B.11: Emergence of Afro-Brazilian City Council Candidates Without Political Experience in Brazil's 2020 Elections, Only Municipalities with At Least 50% of Afro-Brazilians

	Estimate	<i>p</i> -value	h	n_{co}	n_{tr}
# of Afro-Brazilian Candidates	4.146	0.558	6.729	358	346
Ratio of Afro-Brazilian Candidates Per Seat	0.390	0.272	9.819	475	461
% of Afro-Brazilian Candidates	0.396	0.893	8.077	423	404

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election. Estimates are the average treatment effect at cutoff with local linear polynomial regression with triangular kernel and MSE-optimal bandwidth. Columns 1-5 are: polynomial, *p*-value calculated using bias-robust standard errors, main optimal bandwidth, control and treatment observations within the bandwidth. * p < 0.05

Table B.12: Emergence of Afro-Brazilian City Council Candidates Without Political Experience from the Mayor's Party in Brazil's 2020 Elections, Only Municipalities with At Least 50% of Afro-Brazilians

	Estimate	<i>p</i> -value	h	n_{co}	n_{tr}
# of Afro-Brazilian Candidates	-1.287	0.129	7.605	212	241
Ratio of Afro-Brazilian Candidates Per Seat	-0.152^{*}	0.007	8.856	235	270
% of Afro-Brazilian Candidates	-5.996	0.348	10.383	256	297

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election. Estimates are the average treatment effect at cutoff with local linear polynomial regression with triangular kernel and MSE-optimal bandwidth. Columns 1-5 are: polynomial, *p*-value calculated using bias-robust standard errors, main optimal bandwidth, control and treatment observations within the bandwidth. *p < 0.05

B.7 Models Using Polynomials (2, 3, 4)

In this SI, we present the results from models in which we use polynomials of order 2, 3, and 4. We find robust null effects for the emergence of Afro-Brazilian candidates and the emergence of Afro-Brazilian candidates without experience. We detect a few negative and statistically significant results for the analysis of the mayoral party.

Table B.13: Emergence of Afro-Brazilian City Council Candidates in Brazil's 2020 Elections, Different Polynomials

	Polynomial	Estimate	<i>p</i> -value	h	n_{co}	n_{tr}
# of Afro-Brazilian Candidates	2	4.841	0.633	10.826	587	568
Ratio of Afro-Brazilian Candidates Per Seat	2	0.134	0.824	11.015	591	574
% of Afro-Brazilian Candidates	2	-3.520	0.365	12.056	627	596
# of Afro-Brazilian Candidates	3	2.317	0.843	13.147	653	629
Ratio of Afro-Brazilian Candidates Per Seat	3	-0.168	0.811	13.551	657	634
% of Afro-Brazilian Candidates	3	-7.919	0.096	12.933	651	623
# of Afro-Brazilian Candidates	4	-0.516	0.970	14.907	684	654
Ratio of Afro-Brazilian Candidates Per Seat	4	-0.485	0.540	15.737	697	670
% of Afro-Brazilian Candidates	4	-11.600^{*}	0.034	14.530	679	648

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election. Estimates are the average treatment effect at cutoff with local linear polynomial regression with triangular kernel and MSE-optimal bandwidth. Columns 1-6 are: polynomial, p-value calculated using bias-robust standard errors, main optimal bandwidth, control and treatment observations within the bandwidth. *p < 0.05

Table B.14: Emergence of Afro-Brazilian City Council Candidates Without Political Experience in Brazil's 2020 Elections, Different Polynomials

	Polynomial	Estimate	<i>p</i> -value	h	n_{co}	n_{tr}
# of Afro-Brazilian Candidates	2	2.446	0.722	10.874	589	570
Ratio of Afro-Brazilian Candidates Per Seat	_		0==	10.011		
	2	0.007	0.986	10.606	579	559
% of Afro-Brazilian Candidates	2	-2.045	0.596	12.519	637	610
# of Afro-Brazilian Candidates	3	0.922	0.907	13.259	655	631
Ratio of Afro-Brazilian Candidates Per Seat	3	-0.178	0.710	13.449	655	634
% of Afro-Brazilian Candidates	3	-6.398	0.178	13.075	652	626
# of Afro-Brazilian Candidates	4	-0.406	0.965	15.086	687	657
Ratio of Afro-Brazilian Candidates Per Seat	4	-0.335	0.529	15.979	707	671
% of Afro-Brazilian Candidates	4	-9.649	0.078	14.555	679	648

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election. Estimates are the average treatment effect at cutoff with local linear polynomial regression with triangular kernel and MSE-optimal bandwidth. Columns 1-6 are: polynomial, *p*-value calculated using bias-robust standard errors, main optimal bandwidth, control and treatment observations within the bandwidth. *p < 0.05

Table B.15: Emergence of Afro-Brazilian City Council Candidates Without Political Experience from the Mayor's Party in Brazil's 2020 Elections, Different Polynomials

	Polynomial	Estimate	<i>p</i> -value	h	n_{co}	n_{tr}
# of Afro-Brazilian Candidates	2	-0.990	0.236	11.304	323	371
Ratio of Afro-Brazilian Candidates Per Seat	2	-0.114	0.082	11.498	326	372
% of Afro-Brazilian Candidates	2	-4.163	0.619	11.332	323	371
# of Afro-Brazilian Candidates	3	-1.437	0.142	13.564	350	407
Ratio of Afro-Brazilian Candidates Per Seat	3	-0.141	0.057	14.824	366	419
% of Afro-Brazilian Candidates	3	-4.421	0.611	17.394	392	446
# of Afro-Brazilian Candidates	4	-2.032	0.077	14.654	365	416
Ratio of Afro-Brazilian Candidates Per Seat	4	-0.231^{*}	0.008	14.630	364	416
% of Afro-Brazilian Candidates	4	-19.405	0.081	14.356	362	414

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election. Estimates are the average treatment effect at cutoff with local linear polynomial regression with triangular kernel and MSE-optimal bandwidth. Columns 1-6 are: polynomial, p-value calculated using bias-robust standard errors, main optimal bandwidth, control and treatment observations within the bandwidth. *p < 0.05

B.8 Power Analysis

In this SI, we report power analyses to detect an effect equal to 1/2 of the standard deviation of the dependent variable with power equal to 0.8 and $\alpha = 0.05$.

Tables B.16 and B.17 show power analyses for the emergence of Afro-Brazilian candidates and for those without political experience. Given the feasibility of our sample ($N_{co} = 818, N_{tr} = 766$), the power analyses indicate that our sample is enough to detect an effect equal to 1/2 of the standard deviation of the dependent variable.

Table B.16: Emergence of Afro-Brazilian City Council Candidates in Brazil's 2020 Elections, Sample Size Calculation to Detect an Effect Equal to Half of the Standard Deviation of the Dependent Variable

	au	n_{co}	n_{tr}	N
# of Afro-Brazilian Candidates	37.144	182	230	412
Ratio of Afro-Brazilian Candidates Per Seat	1.783	242	333	575
% of Afro-Brazilian Candidates	10.502	370	445	815

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election. Columns 2-5 are: effect size (half of the dependent variable's standard deviation), control and treatment observations needed within the bandwidth to detect the effect, and the total number of observations needed.

Table B.17: Emergence of Afro-Brazilian City Council Candidates Without Political Experience in Brazil's 2020 Elections, Sample Size Calculation to Detect an Effect Equal to Half of the Standard Deviation of the Dependent Variable

	τ	n_{co}	n_{tr}	N
# of Afro-Brazilian Candidates	24.945	191	239	430
Ratio of Afro-Brazilian Candidates Per Seat	1.217	245	342	587
% of Afro-Brazilian Candidates	10.731	357	434	791

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election. Columns 2-5 are: effect size (half of the dependent variable's standard deviation), control and treatment observations needed within the bandwidth to detect the effect, and the total number of observations needed.

Table B.18 reports the power analysis for the emergence of Afro-Brazilian candidates without political experience from the mayor's party. Again, the results indicate that detecting an effect equal to 1/2 of the standard deviation of our dependent variables is hard but still feasible, even though we are using a smaller sample in this analysis ($N_{co} = 434$, $N_{tr} = 494$).

Table B.18: Emergence of Afro-Brazilian City Council Candidates Without Political Experience From the Mayor's Party in Brazil's 2020 Elections, Sample Size Calculation to Detect an Effect Equal to Half of the Standard Deviation of the Dependent Variable

	τ	n_{co}	n_{tr}	N
# of Afro-Brazilian Candidates	1.757	370	353	723
Ratio of Afro-Brazilian Candidates Per Seat	0.127	415	337	752
% of Afro-Brazilian Candidates	15.877	372	414	786

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election. Columns 2-5 are: effect size (half of the dependent variable's standard deviation), control and treatment observations needed within the bandwidth to detect the effect, and the total number of observations needed.

B.9 Models for Blacks (Pretos) and Browns (Pardos)

In this SI, we report results for RD models in which we run models for the subgroups that form the category Afro-Brazilians. The results from the models suggest that a Black/Preto mayor has a negative effect on the emergence of pretos/black candidates. In all three models, the coefficient is negative and statistically significant in the model for the percentage of Pretos (Black) candidates. Note, however, that this is a tiny subsample ($N = 93, n_{co} = 41, n_{tr} = 52$). When we focus on pardos/browns, we detect a null effect for all three dependent variables.

Table B.19: Emergence of Afro-Brazilian City Council Candidates in Brazil's 2020 Elections, Blacks (Pretos) and Browns (Pardos)

Treatment	DV	Estimate	<i>p</i> -value	h	n_{co}	n_{tr}
	# of Pretos (Black) Candidates	-16.421	0.085	7.115	21	27
Pretos (Black)	Ratio of Pretos (Black) Candidates Per Seat	-1.381	0.088	8.571	28	30
	% of Pretos (Black) Candidates	-14.721^{*}	0.013	7.491	23	27
	# of Pardos (Brown) Candidates	7.826	0.306	7.449	440	416
Pardos (Brown)	Ratio of Pardos (Brown) Candidates Per Seat	0.440	0.293	8.366	482	450
	% of Pardos (Brown) Candidates	-0.652	0.858	7.896	464	434

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election (Black/Preto mayor is the treatment in the first three rows, and Brown/Pardo is the treatment in the last three rows). Estimates are the average treatment effect at cutoff with local linear polynomial regression with triangular kernel and MSE-optimal bandwidth. Columns 1-5 are: polynomial, *p*-value calculated using bias-robust standard errors, main optimal bandwidth, control and treatment observations within the bandwidth. *p < 0.05

B.10 Estimated Difference for Candidates With and Without Experience

When discussing our second hypothesis, we mention that one may wonder whether the effect of an Afro-Brazilian mayor on candidates without political experience might be larger than among those candidates with political experience. In this SI, we contemplate this possibility. Specifically, Table B.20 reports the RD coefficients for models in which we use dependent variables for candidates without and with political experience and a z-test for the difference in coefficients (?). We observe that the coefficients for both sets of analyses are null. Moreover, we do not find any evidence that the estimated effects are different for each group of candidates.

Table B.20: Difference in the Effect of Afro-Brazilian Mayor on the Emergence of Afro-Brazilian City Council Candidates Without and With Political Experience

Comparison	Effect on Candidates Without Experience	Effect on Candidates With Experience	Difference
# of Candidates	3.255 (6.256)	2.719 (3.078)	0.535 (6.972)
Ratio of Candidates	0.310 (0.316)	0.176 (0.174)	0.134 (0.360)
% of Candidates	-0.928 (3.474)	-0.590 (0.172)	-0.337 (3.500)

***p < .05. Standard Errors in Parentheses. Two-tailed test.

B.11 Spatial Models

In this SI, we investigate the possibility that the election of an Afro-Brazilian mayor in neighboring municipalities boosts the number of Afro-Brazilian citizens competing for a city council position in subsequent elections using spatial econometric models. This involves multiplying a variable that includes information about whether the mayor elected in the past election self-identified as Afro-Brazilian by a row-standardized spatial matrix that contains information about municipalities sharing a border. In practical terms, the result of this multiplication yields, for each municipality, the proportion of its neighbors that elected an Afro-Brazilian mayor in the past election ("Spatial Lag" in the tables).

In Tables B.21 and B.22, the dependent variables are counts of Afro-Brazilian candidates running for city council and Afro-Brazilian candidates running for city council without political experience, respectively. Following the approach of Gilardi (2015), we demonstrate the robustness of our results across Poisson and Negative Binomial specifications. Additionally, we performed OLS models with the dependent variable log-transformed to address the skewed distribution.

The model results indicate no evidence of a direct effect of electing an Afro-Brazilian mayor on the emergence of Afro-Brazilian candidates for city council in the next election. However, we did observe statistically significant yet small spatial effects when considering Afro-Brazilian candidates without political experience. For example, based on the Poisson specification in Table B.22, and keeping all variables at their means and mode, the prediction is that an increase of one standard deviation in the spatial lag would, on average, raise the number of Afro-Brazilian candidates running for city council in the state of São Paulo from 15.49 to 15.86.

	Poisson	Negative Binomial	OLS
(Intercept)	-2.40^{***}	0.03	-0.45
	(0.43)	(0.29)	(0.62)
Spatial Lag	0.05	0.04	0.03
	(0.03)	(0.03)	(0.03)
Afro-Brazilian Candidate Elected as the Mayor (t-1)	-0.02	-0.02	-0.02
	(0.01)	(0.01)	(0.02)
Number of Afro-Brazilian Candidates Elected for City Council (t-1)	0.00	-0.00	0.00
	(0.00)	(0.01)	(0.01)
Number of Afro-Brazilian Candidates Running for City Council (t-1)	-0.00	-0.00^{*}	-0.00
	(0.00)	(0.00)	(0.00)
Percent of Votes to Afro-Brazilian Candidates in City Council Elections (t-1)	0.01^{***}	0.01^{***}	0.01^{***}
	(0.00)	(0.00)	(0.00)
Number of City Council Positions	-0.03^{***}	-0.03^{***}	-0.04^{***}
	(0.01)	(0.01)	(0.01)
Number of City Council Candidates	0.00^{**}	0.00***	0.00***
	(0.00)	(0.00)	(0.00)
Percent of Votes to Left-Wing Parties in City Council Elections (t-1)	-0.00	-0.00	0.00
	(0.00)	(0.00)	(0.00)
Literacy (%)	0.02***	0.01**	0.01^{**}
	(0.00)	(0.00)	(0.00)
Women (%)	0.00	0.00	0.00
	(0.01)	(0.01)	(0.01)
Urban (%)	0.00***	0.00***	0.00***
	(0.00)	(0.00)	(0.00)
White (%)	-0.02^{***}	-0.02^{***}	-0.02***
	(0.00)	(0.00)	(0.00)
Population (log)	0.52***	0.34***	0.38***
	(0.02)	(0.02)	(0.03)
GDP per capita	0.00*	0.00*	0.00*
	(0.00)	(0.00)	(0.00)
N	5,130	5,130	5,006
Theta	—	9.339 (0.269)	
State fixed effects	Yes	Yes	Yes

Table B.21: Emergence of Afro-Brazilian City Council Candidates in Brazil's 2020 Elections (Spatial Model Results)

Note: In practical terms, for each municipality, the "Spatial Lag" variable indicates the proportion of that municipality's neighbors that elected an Afro-Brazilian mayor in the past election. The dependent variable in the Poisson and Negative Binomial models is the count of Afro-Brazilian candidates running for city council. In the OLS model, the dependent variable is the log-transformed count. Standard errors are clustered by state. ***p < 0.001; **p < 0.01; *p < 0.05

	Poisson	Negative Binomial	OLS
(Intercept)	-3.15^{***}	-0.51	-1.48
	(0.52)	(0.35)	(0.85)
Spatial Lag	0.08^{*}	0.07^{*}	0.10^{**}
	(0.04)	(0.03)	(0.04)
Afro-Brazilian Candidate Elected as the Mayor (t-1)	-0.01	-0.00	-0.01
	(0.02)	(0.01)	(0.02)
Number of Afro-Brazilian Candidates Elected for City Council (t-1)	0.01^{***}	0.01^{*}	0.02^{*}
	(0.00)	(0.01)	(0.01)
Number of Afro-Brazilian Candidates Running for City Council (t-1)	-0.00	-0.00^{***}	-0.00^{*}
	(0.00)	(0.00)	(0.00)
Percent of Votes to Afro-Brazilian Candidates in City Council Elections (t-1)	0.00***	0.00***	0.00**
	(0.00)	(0.00)	(0.00)
Number of City Council Positions	-0.04^{***}	-0.04^{***}	-0.05^{***}
	(0.01)	(0.01)	(0.01)
Number of City Council Candidates	0.00***	0.01^{***}	0.01***
	(0.00)	(0.00)	(0.00)
Percent of Votes to Left-Wing Parties in City Council Elections (t-1)	-0.00	-0.00	0.00
	(0.00)	(0.00)	(0.00)
Literacy (%)	0.02***	0.01^{***}	0.01^{***}
	(0.00)	(0.00)	(0.00)
Women (%)	-0.00	-0.00	0.01
	(0.01)	(0.01)	(0.02)
Urban (%)	0.00***	0.00***	0.00***
	(0.00)	(0.00)	(0.00)
White (%)	-0.02^{***}	-0.02^{***}	-0.02^{***}
	(0.00)	(0.00)	(0.00)
Population (log)	0.56^{***}	0.36^{***}	0.39***
	(0.02)	(0.03)	(0.03)
GDP per capita	0.00^{*}	0.00	0.00^{*}
	(0.00)	(0.00)	(0.00)
N	5,130	5,130	4,940
Theta	—	7.876 (0.244)	
State fixed effects	Yes	Yes	Yes

Table B.22: Emergence of Afro-Brazilian City Council Candidates Without Political Experience in Brazil's 2020 Elections (Spatial Model Results)

Note: In practical terms, for each municipality, the "Spatial Lag" variable indicates the proportion of that municipality's neighbors that elected an Afro-Brazilian mayor in the past election. The dependent variable in the Poisson and Negative Binomial models is the count of Afro-Brazilian candidates running for city council without political experience. In the OLS model, the dependent variable is the log-transformed count. Standard errors are clustered by state. ***p < 0.001; *p < 0.01; *p < 0.05

C Intersectionality Based Analysis

In this SI, we explore how the race and gender of role models together affect patterns of candidate emergence. According to the intersectionality frameworks, multiple forms of disadvantage may compound. As a result, the interaction of gender and race may produce an effect that is different from the sum of the individual effects of race and gender. To test this argument, we evaluate whether the winning of an Afro-Brazilian woman, white woman, Afro-Brazilian man, and white man leads to the emergence of candidates from the same social-demographic group.

Testing for intersectionality effects using the RD framework requires a decision regarding the control group. When evaluating, for instance, the effect of an Afro-Brazilian woman, the control group could be defined in three distinct ways: municipalities where a man won, municipalities where a white person won, or municipalities where a white man won. The two first control groups have the advantage of providing a larger sample, given that we observe more cases in which the winner (runner-up) is an Afro-Brazilian woman and the runner-up (winner) is a man (or white) than cases in which the winner (runner-up) is an Afro-Brazilian woman and the runner-up (winner) is a white man. However, the issue with the first two types of control groups is that at least one of the characteristics of the treated group is present in the control group and, therefore, contaminates it. As a result, we opt for the third approach and define the control group as white men to avoid this issue. When assessing the impact of a white male role model, we use Afro-Brazilian women as the control group.

We use the same three sets of dependent variables as our main analysis. The tables below show our findings. We find a null effect in all 36 tests. Nevertheless, it is important to note that because electoral authorities only began to collect data on the race of municipal candidates in 2016, our sample in each test is quite small (i.e., we only analyze the 2020 election). As a result, we invite researchers to reexamine how role models' racial and gender identities may together affect patterns of candidates when more data become available.

Table C.1: Emergence of Afro-Brazilian Women City Council Candidates in Brazil's 2020 Elections

DV	Estimate	<i>p</i> -value	h	n_{co}	n_{tr}
# of Afro-Brazilian Women Candidates	-2.392	0.537	6.527	52	42
Ratio of Afro-Brazilian Women Candidates Per Seat	-0.272	0.395	7.963	61	46
% of Afro-Brazilian Women Candidates	1.628	0.594	10.239	65	54
# of Afro-Brazilian Women Candidates (No Experience)	-3.281	0.277	6.162	46	40
Ratio of Afro-Brazilian Women Candidates Per Seat (No Experience)	-0.368	0.171	6.499	52	42
% of Afro-Brazilian Women Candidates (No Experience)	0.356	0.944	8.160	61	47
# of Afro-Brazilian Women Candidates (No Experience, Mayor's Party)	0.294	0.774	6.224	29	24
Ratio of Afro-Brazilian Women Candidates Per Seat (No Experience, Mayor's Party)	0.043	0.666	6.627	33	24
% of Afro-Brazilian Women Candidates (No Experience, Mayor's Party)	-2.116	0.879	5.765	27	23

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election (Afro-Brazilian Woman mayor is the treatment). Estimates are the average treatment effect at cutoff with local linear polynomial regression with triangular kernel and MSE-optimal bandwidth. Columns 1-5 are: polynomial, *p*-value calculated using bias-robust standard errors, main optimal bandwidth, control and treatment observations within the bandwidth. *p < 0.05

Table C.2: Emergence of Afro-Brazilian Men City Council Candidates in Brazil's 2020 Elections

DV	Estimate	<i>p</i> -value	h	n_{co}	n_{tr}
# of Afro-Brazilian Men Candidates	19.976	0.171	5.293	49	60
Ratio of Afro-Brazilian Men Candidates Per Seat	1.532	0.158	6.150	53	66
% of Afro-Brazilian Men Candidates	-1.209	0.835	7.404	69	76
# of Afro-Brazilian Men Candidates (No Experience)	12.963	0.151	5.388	50	61
Ratio of Afro-Brazilian Men Candidates Per Seat (No Experience)	1.005	0.143	6.163	53	66
% of Afro-Brazilian Men Candidates (No Experience)	-0.960	0.857	7.286	68	76
# of Afro-Brazilian Men Candidates (No Experience, Mayor's Party)	-0.146	0.876	7.377	35	51
Ratio of Afro-Brazilian Men Candidates Per Seat (No Experience, Mayor's Party)	-0.037	0.668	8.452	39	57
% of Afro-Brazilian Men Candidates (No Experience, Mayor's Party)	8.840	0.426	5.934	25	44

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election (Afro-Brazilian Man mayor is the treatment). Estimates are the average treatment effect at cutoff with local linear polynomial regression with triangular kernel and MSE-optimal bandwidth. Columns 1-5 are: polynomial, *p*-value calculated using bias-robust standard errors, main optimal bandwidth, control and treatment observations within the bandwidth. *p < 0.05

Table C.3: Emergence of White Women City Council Candidates in Brazil's 2020 Elections

DV	Estimate	<i>p</i> -value	h	n_{co}	n_{tr}
# of White Women Candidates	-5.123	0.247	5.487	61	50
Ratio of White Women Candidates Per Seat	-0.247	0.513	6.735	70	59
% of White Women Candidates	-3.107	0.399	8.148	82	77
# of White Women Candidates (No Experience)	-3.696	0.243	5.504	61	50
Ratio of White Women Candidates Per Seat (No Experience)	-0.195	0.472	6.640	69	57
% of White Women Candidates (No Experience)	-3.711	0.426	9.728	87	86
# of White Women Candidates (No Experience, Mayor's Party)	-0.651	0.321	7.769	53	37
Ratio of White Women Candidates Per Seat (No Experience, Mayor's Party)	-0.054	0.378	7.913	54	39
% of White Women Candidates (No Experience, Mayor's Party)	-4.513	0.641	7.914	54	39

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election (White Woman mayor is the treatment). Estimates are the average treatment effect at cutoff with local linear polynomial regression with triangular kernel and MSE-optimal bandwidth. Columns 1-5 are: polynomial, *p*-value calculated using bias-robust standard errors, main optimal bandwidth, control and treatment observations within the bandwidth. *p < 0.05

Table C.4: Emergence of White Men City Council Candidates in Brazil's 2020 Elections

DV	Estimate	<i>p</i> -value	h	n_{co}	n_{tr}
# of White Men Candidates	8.429	0.472	9.620	52	65
Ratio of White Men Candidates Per Seat	0.609	0.380	12.538	60	74
% of White Men Candidates	2.632	0.652	9.509	51	64
# of White Men Candidates (No Experience)	5.319	0.435	9.738	53	65
Ratio of White Men Candidates Per Seat (No Experience)	0.350	0.425	10.443	54	66
% of White Men Candidates (No Experience)	-2.505	0.670	5.812	39	45
# of White Men Candidates (No Experience, Mayor's Party)	0.042	0.961	8.196	25	38
Ratio of White Men Candidates Per Seat (No Experience, Mayor's Party)	-0.046	0.499	6.469	24	33
% of White Men Candidates (No Experience, Mayor's Party)	-6.321	0.599	6.706	24	35

Note: Running variable is the difference in vote share between the top-two candidates in the municipal election (White Man mayor is the treatment). Estimates are the average treatment effect at cutoff with local linear polynomial regression with triangular kernel and MSE-optimal bandwidth. Columns 1-5 are: polynomial, *p*-value calculated using bias-robust standard errors, main optimal bandwidth, control and treatment observations within the bandwidth. *p < 0.05

D Non-competitive Candidates

In this SI, we present the count of candidates who obtained less than 10% and 1% of the district quota in personal votes during the 2000-2020 period. The electoral quota is determined by dividing the total number of valid votes in the district by the available number of seats. These candidates are considered non-competitive (?). Figures D.1, D.2, and D.3 reveal that a majority of candidates running for city council are non-competitive, particularly among women and Afro-Brazilian candidates. The prevalence of non-competitive candidates suggests that parties maintain an inclusive stance toward list composition, allowing women and Afro-Brazilian candidates to pursue city council seats if they so desire. While parties provide less support for women and Afro-Brazilian candidates, they do not seem to prevent them from being included in the party list (e.g., Janusz and Campos 2021; ?).

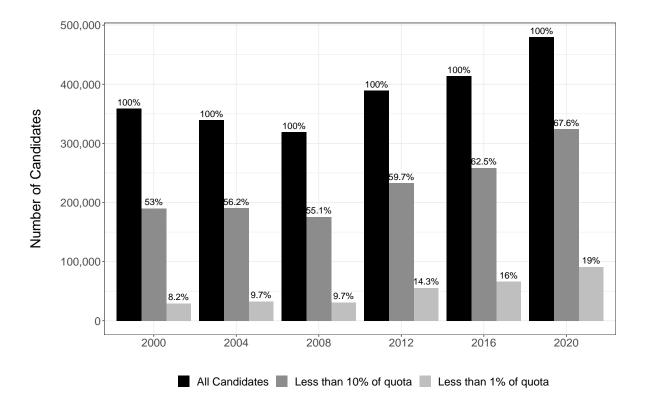


Figure D.1: Non-Competitive Candidates for City Council (2000-2020)

Note: The electoral quota is determined by dividing the total number of valid votes in the district by the available number of seats. For each election year, the bars represent the total number of candidates running for city council, the number of candidates who received less than 10% of the district quota in personal votes, and the number of candidates who obtained less than 1% of the district quota in personal votes. Candidates who received less than 10% of the district quota are non-competitive (?).

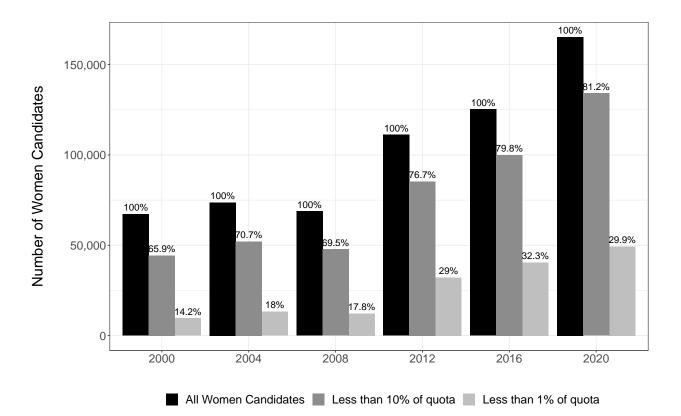


Figure D.2: Non-Competitive Women Candidates for City Council (2000-2020)

Note: The electoral quota is determined by dividing the total number of valid votes in the district by the available number of seats. For each election year, the bars represent the total number of women candidates running for city council, the number of women candidates who received less than 10% of the district quota in personal votes, and the number of women candidates who obtained less than 1% of the district quota in personal votes. Candidates who received less than 10% of the district quota in personal votes.

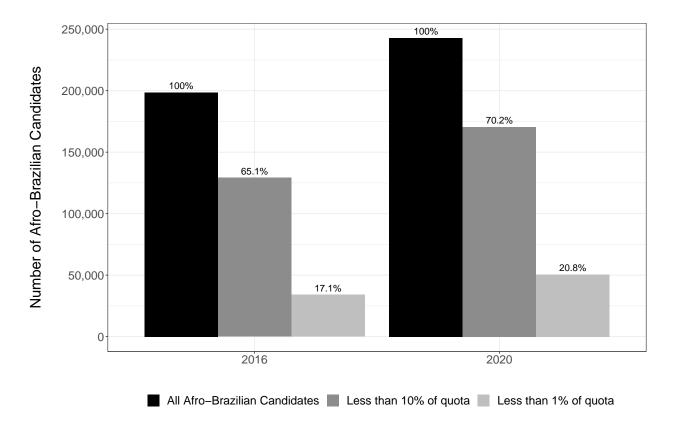


Figure D.3: Non-Competitive Afro-Brazilian Candidates for City Council (2016-2020)

Note: The electoral quota is determined by dividing the total number of valid votes in the district by the available number of seats. For each election year, the bars represent the total number of Afro-Brazilian candidates running for city council, the number of Afro-Brazilian candidates who received less than 10% of the district quota in personal votes, and the number of Afro-Brazilian candidates who obtained less than 1% of the district quota in personal votes. Candidates who received less than 10% of the district quota are non-competitive (?). Information about race was not available prior to 2016.